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Mapas Simpléticos

Sistemas discretizados, conservativos, descritos por relagoes
de recorréncia.

Exemplos de mapas bidimensionais (com duas variaveis):
Mapa Padrao, Mapa de Henon.

Simulam mapas de Poincaré, de sistemas com Hamiltonianas
guase integraveis, com dois graus de liberdade e uma
constante de movimento.

Sistemas mixtos: orbitas regulares e cadticas.
Parametros de controle.
Pontos fixos, estabilidade.



| — Mapas Simpléeticos

(Baseado no Capitulo 3 do livro Regular and
Chaotic Motion, Lichtenberg/Lieberman)
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Figure 3.1. Motion of a phase space point for an integrable system with two degrees
of freedom. (a) The motion lies on a torus J; = const., J, = const. (b) Illustrating
trajectory intersections with a surface of section 0, = const. after a large number of

such intersections.



Mapa de Poincaré
Sistema integravel

*W irrational

Figure 3.2.1. For integrable systems, the twist map consists of trajectories that
densely fill a circle (irrational winding number w) and discrete, periodic points
(rational winding number w). The rate at which a trajectory completes one rev-
olution of the circle depends on the radius. Thus an initial line of points, a,
becomes twisted, b, by the map.



Evolucao de Y
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Como pode ser notado, a evolugao para Y € diferente de acordo com 0
tipo de mapa, twist ou nao-twist, sendo monotonicamente crescente
para o primeiro e nao-monotonica para o0 segundo.



Mapas Twist
Mapa de Poincaré: Intersecgoesdas trajetoriasno
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Mapas (twist e nao twist) sao conservativos
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Se J, =J, a(J)e constante e o mapa ¢ integravel



Mapa Canbnico para Sistema Hamiltoniano

Sistema Quase Integravel H(J, 8) = Hy(J) + €eH,(J, 0)

Amplitude da perturbacao ¢ ~ 0
Mapa de Poincaré: Intersec¢oesdas trajetoriasno

planoJ x 0, (0,=cte.,]J,>0)

Mapa quase integravel

Jov1=J,+€f(J,+1,0,),  Omitindo o indice 1 de J,
9n+1 — Hn + 27UX(J"+ 1) + €g(']n+1: Gn)

Funcoes f, g periddicas em 0



For many interesting mappings, f is independent of J, and g = 0. Then
(3.1.13) takes the form of a radial twist mapping:

L. =J +¢ef(8,), (3.1.17a)

9,{_“ =0, + 2no(J, 4 ;). (3.1.17b)



Il - Mapa Padrao

(Baseado no Capitulo 3 do livro

The Transition to Chaos, L. E. Reichl, 1992)

L. E. Reichl, Physica Scripta. Vol. T39, 90-95, 1991.
The Quantum and Stochastic Manifestations of Chaos
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Let us first consider the standard map for the case when K = 0

Pn+1 _ TO Pn — Dn Pn = pg for all n
xn+1 :I;n x'n + p‘n—{-l

When py = % the orbit will be periodic with perioc Mf
after M steps the orbit repeats itself (mod 1), xp; = zog+ N = zg (mod 1)

If pg is irrational, then x, never repeats itself
For K = 0, the winding number w(py) = po

w(p0)=xn+1'xn=Ax=po



‘Orbitas periddicas e quase-periddicas

Figure 3.5.1. The behavior of some typical orbits of the integrable twist map
Eq. (3.5.1). For this case, the winding number w = p. Orbits with irrational
winding number fill a line densely, while those with rational winding number
form a discrete set of periodic points.



For the case K#0, the winding number can be defined as

Ln — T

w(po) = lim —
and can be used to characterize both periodic orbits and KAM tori in the
standard map. The periodic orbits have a rational winding number while
the KAM tori have an irrational winding number. A periodic orbit with

winding number w(pg) = % is called an M-cycle and has the property that

Ty = x(()M) + N (mod 1) and py = p(()M), where (pE,M),xéM) ) denote the

coordinates of one member of the M-cycle.
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Fignra 4.1: Mapa Padrao. K = 1072,



the M-cycles will be either elliptic or hy-

perbolic. For the standard map, these periodic orbits are particularly easy
to find numerically because of a symmetry property [Greene 1979al. The
standard map, Tk, can be written as a product of two involutions, I; and

I>, such that
TK - -[2-[1)

11( ;’ ) - ( p— %_Si;(?m) )
&(§>=(pfx>

I? = I? = identity map, and det/; = detl, = —1



Each of these
involutions has lines of fixed points; that is, lines of points for which

h(p) = (p) and b(p) = (p ) For I, the lines of fixed
x T x x

points are x = 0 and = = %, while, for Iz, z = § and z = erl are lines

2
of fixed points.

Pontos fixos:
(x=0, p=0)
(x=0.5, p=0)




Standard Map
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Mudanca em x
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Figure 3.5.3. Some orbits of the standard map (with periodic boundary
conditions): (a) K = 0.1716354; (b) K = 0.4716354.



K=0.7716354
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Figure 3.5.3. (continued) (c) K = 0.7716354; (d) K = K* = 0.9716354.
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Figure 3.5.3. Some orbits of the standard map (with periodic boundary Figure 3.5.3. (continued) (c) K = 0,7716354; (d) K = K* = 0.9716354.
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Caos Confinado / Barreiras KAM

Cores diferentes indicam dominios caodticos confinados

arXiv:1810.1129v1, M. Harsoula, K. Karamanos, G. Contopoulos (2018)



Il — Estabilidade de Pontos Fixos

( Baseado na secao 3. Area-Preserving Maps do
livro The Transition to Chaos de L. Reichl)
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Figure 3.2.1. For integrable systems, the twist map consists of trajectories that
densely fill a circle (irrational winding number w) and discrete, periodic points
(rational winding number w). The rate at which a trajectory completes one rev-
olution of the circle depends on the radius. Thus an initial line of points, a,
becomes twisted, b, by the map.
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Figure 3.2.4. The flow of points in the neighborhood of fixed points. For regular
hyperbolic points (residue R < (), successive points on an orbit remain on one
side of the fixed point, while for inversion hyperbolic points (residue R > 1) suc-
cessive points alternate across the fixed point. The numbers indicate the sequence
in time of the points. (The residue, R, is defined in Sect. 3.5.)



3.2.4 The Tangent Map

(0)
If we know the location of a given fixed point X® = ( g(o) ), where

X0 = TM X0 we can determine its character by linearizing the mapping,
TM | about the fixed point. The linearized mapping, VT M, is called the
tangent map. Its eigenvalues are sometimes called the “multipliers” of the

fixed point. To obtain VIT'M | linearize X,, = ( g" ) about the fixed point
n
X)) That is, let X, = X9 + §X,,, where §X,, is small. Then

6Xp1 = VTMEX,,, (3.2.11)

where

Adn

9pn+1  O9Pn+
M __ d
VIT =1 0¢nis  8nis ~
Pn Pn X(0)

(3.2.12)



We can determine the character of a particular M-cycle by linearizing
the standard map in Eq. (3.5.1) about the coordinates of that M-cycle.
After M steps, an initial point, (Zo,pp), on an M-cycle gets mapped to
point (Zar,Pas) via the mapping

Pm \ _ um( Po
(2 )z(B) »

where pyr = po and Ty = Zo + N(mod 1) = &y. Let us now linearize this
mapping in the neighborhood of the M-cycle. That is, we let z,, = &g +éxp,

and p, = pp + ép,. Then we can write
( opm ) —~ ?T;:f’( oy ) (3.5.7)

ﬁIM' ﬁ:]'lg

where

Opar Opw
VT = | g Dmo . (3.5.8)
Boo 950/ (my—izo. poi)



The eigenvalues of VT'M are given by
A ATY(VTM) + det(VITM) = 0. (3.2.13)

But for area-preserving maps, det(VT™) = 1, so the eigenvalues are given

by
f {t?
Ai = 5 + T~ 1, (3.2.14)

where t = Tr(VTM). Thus, the eigenvalues come in reciprocal pairs, Ay =
A~ For —2 < t < 2, the eigenvalues form complex conjugate pairs that lie
on the unit circle, and the fixed points are elliptic. For ¢ > 2, the fixed point
is regular hyperbolic. For £ < —2, the fixed point is inversion hyperbolic
(subsequent points of the mapping alternate across the fixed point (see
Fig. 3.2.4). For the special cases t = +2, the eigenvalues are degenerate,
having values +1 or —1, and the fixed point is parabolic. Parabolic fixed
points are generally unstable [MacKay 1982].



Since the standard map is area-preserving, Det(VTH ) = Az = L If
A1 = A", the M-cycle is elliptic. If Ay = 5= (A real), the M-cycle is
hyperbolic. From our results in Sect. 3.2, the standard map will have two
M-cycles, one elliptic and one hyperbolic (as long as K is small enough),
for each value of M and N relatively prime.



If the mapping is defined in terms of smooth continuous functions, the
eigenvectors of VI’ in the neighborhood of the fixed point will be smooth
and continuous. For elliptic fixed points, the eigenvalues will be pure imag-
inary and the eigenvectors will describe motion that oscillates about the
fixed point. For hyperbolic fixed points, the eigenvalues will be real and of

the form A, = § and Ay = A, where A is real and A > 1. Let us denote the
eigencurve associated with eigenvalue 1 as W(*) and the eigencurve asso-
ciated with eigenvalue A as W(*). Once the eigencurves of the tangent map
have been found, they can be extended away from the neighborhood of the
fixed point by using the full map, 7M. These extensions of the eigencurves
are also denoted W) and W%  and are called the stable manifold and
unstable manifold, respectively. Points on W*) will be mapped toward
the fixed point since (VT M)W () = ( %)“W(s), while points on W) will
be mapped away from the fixed point since (VTM)"W %) = APW () (see
Fig. 3.2.5).



